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Abstract. Multi-flavour (Ny > 3) chiral perturbation theory (xPT) may exhibit instabilities due to vacuum
fluctuations of sea gq pairs. Keeping the fluctuations small would require a very precise fine tuning of
the low-energy constants La(u) and Le(u) to L§(M,) = —0.51 - 1072, L&'*(M,) = —0.26 - 1073, A
small deviation from these critical values — like the one suggested by the phenomenology of OZI-rule
violation in the scalar channel — is amplified by huge numerical factors inducing large effects of vacuum
fluctuations. This would lead in particular to a strong Ny dependence of chiral symmetry breaking (xSB)
and a suppression of the multi-flavour chiral order parameters. A simple resummation is shown to cure the
instability of Ny > 3 xPT, but it modifies the standard expressions of some O(p?) and O(p*) low-energy
parameters in terms of observables. On the other hand, for r = ms/m > 15, the two-flavour condensate
is not suppressed, due to the contribution induced by massive vacuum 5s pairs. Thanks to the latter, the
standard two-flavour xPT is protected from multi-flavour instabilities and could provide a well-defined

expansion scheme in powers of non-strange quark masses.

1 Introduction

Understanding chiral symmetry breaking (xSB) in low-
energy QCD still deserves both phenomenological and the-
oretical efforts. First, there is a growing need to identify
and to separate non-perturbative QCD effects from possi-
ble manifestations of “new physics” in experimental tests
of the standard model (e.g. weak matrix elements, €'/e,
(9—2),. .. ). Furthermore, the subject has its own theoret-
ical interest. Vector-like gauge theories such as QCD for-
mulated in a large Euclidean box allow for a particularly
attractive interpretation of spontaneous xSB in terms of
the lowest modes of the Dirac operator averaged over
all gluon configurations [1]. In QCD-like theories, some
characteristic properties of the Dirac spectrum have been
proven [2, 3] and possible consequences for chiral order pa-
rameters have been conjectured [4]. More generally, this
approach to xSB suggests an analogy with disordered sys-
tems of higher dimensionality (d = 4) emphasising notions
such as the average and the fluctuation of the density of
small Dirac eigenvalues, as well as the transport prop-
erties (e.g. conductivity) [5]. Finally, the cornerstone of
the whole of this investigation is chiral perturbation the-
ory (xPT) [6,7], which provides a systematic link between
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theoretical characteristics of xSB (described by order and
fluctuation parameters) on one hand and observable prop-
erties of Goldstone bosons (masses, decay constants, scat-
tering amplitudes, decay form-factors, ...) on the other
hand.

During the last few years both theoretical and exper-
imental progress was achieved along these lines. It has
been suggested that order parameters of xSB, in partic-
ular the quark—antiquark condensate (gq), could strongly
depend on the number N of light flavours [8,9]. As Ny
increases, (gq) as well as the Goldstone boson coupling
F; are gradually suppressed, due to the paramagnetic be-
haviour of Dirac eigenvalues and to increasing fluctuations
of the density of states [3,4]. This effect is induced by light-
quark loops and it cannot be detected in quenched lattice
simulations. Actually, there are two kinds of paramagnetic
effects generated by loops of sea quarks which are both of
the same origin': the massless loops suppress chiral order
parameters whereas the massive sea-quark pairs enhance
them, as long as their mass is of order Agcp or smaller.
In nature, this last remark merely concerns the strange
quark, whose mass is slightly below Agcp. The abundance
of strange quark—antiquark pairs in the vacuum can thus
lead to a different behaviour of two-flavour (ms ~ Aqcp)
and three-flavour (ms; = 0) chiral dynamics. Such a dif-
ference would be characterised by a non-negligible vac-
uum correlation between strange and non-strange quark

1A sea-quark loop is one with no external source attached
to it
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pairs, implying in turn large 1/N. corrections and viola-
tion of the OZI-rule in the scalar channel. The latter is
actually observed [10] and a strong variation of xSB be-
tween Ny = 2 and N; = 3 has been indeed reported on
the basis of sum-rule studies [11,12,14] using as input the
available information about the scalar sector 0.

Such a possibility should now be considered in the
light of the new experimental information on low-energy
7w scattering which has been recently published [15] and
analysed [16-20]. The outcome of these analyses shows
that, in the presence of massive §s pairs in the vacuum,
the two-flavour condensate (@u) is large and dominates the
SU(2)x SU(2) symmetry-breaking effects [19,20]. Accord-
ingly, the standard two-flavour xPT expansion in powers
of m,, and my [6] should be expected to converge rather
well. On the other hand, large vacuum fluctuations of gq
pairs would result into a large difference between Ny = 2
and Ny = 3 condensates, destabilising the three-flavour
expansion. Indeed, a detailed SU(3) x SU(3) analysis of
Goldstone boson masses and decay constants within the
standard two-loop xPT [21] has revealed an anomalously
large O(p®) contribution to M2, depending on a fine tun-
ing of the LECs L4 (1) and Lg (1) — which precisely reflect
vacuum fluctuations. The purpose of this paper is to show
that the difference in the chiral behaviour of two-flavour
and multi-flavour QCD described above could be natu-
rally explained in terms of the interplay between vacuum
fluctuations (of small Dirac eigenvalues) and chiral order
(described by order parameters such as (gq)).

We start by considering Ward identities and low-energy
theorems for the two-point functions (D* D) and (V 2V’ —
A A% where V¢ A% and D® are (charged) vector cur-
rents, axial currents and the divergences of the latter, re-
spectively. We write these identities in a form reminiscent
of the YPT expansion of M3F% and F2 (P =m, K, n), in-
cluding explicitly the leading and next-to-leading orders
in powers of quark masses [7] and collecting (not neglect-
ing) all remaining orders into well-defined “remainders”.
We refer to Ward identities written in this way as “mass
and decay constant identities”.

We then show that there exist two exact non-linear
relations between the order parameters (gq) and F3 in
the chiral limit SU(Ny) x SU(Ny) with Ny > 3 and two
“fluctuation parameters” which are defined in terms of
the standard LECs Lg(u) and L4(p): in these relations,
all the effects of higher xyPT orders are absorbed into a
finite multiplicative renormalisation of order and fluctua-
tion parameters. The deviation from 1 of the correspond-
ing renormalisation constants (rescaling factors) remains
under control to the extent that the NNLO remainders in
mass and decay constant identities are small. The xPT
series is reproduced in the limit of small fluctuation pa-
rameters, implying a very precise fine tuning of Lg() and
L4(p). Otherwise (and in particular for large fluctuation
parameters), the multi-flavour chiral condensate is sup-
pressed, and the standard xPT interpretation of mass and
decay constant identities breaks down. This need not af-
fect the overall convergence of the YPT series. We actually
expect that for the physical value of mg the multi-flavour
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xPT still makes sense globally. In this case the instability
caused by large fluctuations and by the suppression of the
quark condensate can be cured by a simple “resummation”
which amounts to replacing the perturbative solution of
the non-linear relations between order and fluctuation pa-
rameters by their exact algebraic solution. This merely
modifies the standard way of expressing the parameters
of the effective Lagrangian in terms of observable quanti-
ties [7].

The multi-flavour mass and decay constant identities
can be further used to define the two-flavour order param-
eters, by taking the limit m,,, mg — 0 but keeping m fixed
at its physical value. In this way we show that the two-
flavour condensate and decay constant are not affected
by the large fluctuations which suppress the multi-flavour
condensate. In addition, this allows one to discuss the con-
nection with two-flavour xPT and the new 77 scattering
data.

The plan of this article is the following. In Sect. 2, we
discuss the impact of loops of massive sea quarks (typ-
ically, ss pairs) on the pattern of xySB. We introduce in
Sect. 3 the mass and decay constant identities for a generic
Ny > 3, and show that they lead to an exact system of
relations between order and fluctuation parameters, pre-
sented in Sect. 4. The general properties of this system are
then discussed in the light of the positivity and (conjec-
tured) paramagnetic inequalities that the order and fluc-
tuation parameters have to obey (Sect.5). Section 6 is de-
voted to the study (in the plane of fluctuation parame-
ters) of the critical line where the symmetry is restored,
i.e. both the condensate and the decay constant vanish.

Section 7 briefly summarises properties of the large-
N, limit in which fluctuations are suppressed. Then in
Sect. 8 we discuss the opposite limit of large fluctuations.
A possible realisation of the latter can be interpreted as
a limit of large Ny. It is shown that the limit of large
fluctuations is in principle different from the symmetry
restoration limit: despite the continuous vanishing of the
multi-flavour quark condensate, the decay constant stays
non-zero. Section9 deals with the SU(2) x SU(2) chiral
limit: we check once more that in the large-fluctuation
limit the two-flavour condensate remains non-zero and the
two-flavour Gell-Mann—QOakes—Renner relation is approxi-
mately obeyed, and we discuss briefly the recent results on
w7 scattering. The conclusion and a few appendices close
the paper.

2 Role of the mass of sea quarks

When defining a chiral limit or a chiral order parameter,
it should be stated which fermions are taken massless and
which quarks in the sea are left massive. The simplest situ-
ation is the one with just NV massless fermions 1, ..., %N,
(i.e. my =mg = ... = my = m — 0) and no other mas-
sive fermions left. The condensate of this purely massless
theory is defined as

dijo(N) = —nlligloﬁﬁzwﬂ = — (i) N- (1)



S. Descotes-Genon et al.: Chiral order and fluctuations in multi-flavour QCD

The expression of the condensate in terms of eigenvalues
A of the Euclidean Dirac operator 7,D,[G] defined in a
box L x L x L x L with periodic boundary conditions (up
to a gauge transformation) is well known as the Banks—
Casher formula [1]. Formally, it can be written as

.1 m
o(N) =lim <<Z m?JrA%[G}>> . (2)

n

where lim means taking V' — oo first and m — 0 after-
wards. The average ({ )) over Euclidean gluon configura-
tions involves the Nth power of the fermion determinant
AN(m, @). Since for m — 0, V — oo only the smallest
eigenvalues contribute in (2), it is conceivable that the
main N dependence merely arises from the infrared part
of the determinant A(m, G) = AlrAuy, defined as

Ar(m. @) = m ] m’ 4 Ay (3)

where v is the winding number of the gluon configuration
G and K(A,G) is an integer corresponding to a cutoff
A such that A\x = A. Positive eigenvalues are ranked in
ascending order A\; < Ao < ... < Ag = A. The numbers
wy, are defined by the Vafa—Witten bound [3] for the Dirac
eigenvalues:

1/d
%) = w,. (4)
The existence of such a uniform bound independent of
gauge field configurations is a specific property of QCD-
like gauge theories. It implies (AR)V ! < (Ar)Y for
any finite cutoff K and for m < p. In the chiral limit
V — oco,m — 0 one can then expect the paramagnetic
inequality

An<0(

o(N+1)<o(N). (5)

In the real world, the situation is slightly more compli-
cated due to the role of massive virtual quark pairs which
may be present in the vacuum. Notice that massive and
massless pairs have different chiral transformation prop-
erties and do not affect the chiral structure of the vacuum
in the same way. In QCD one deals with a hierarchy of
quark masses:

My, < Mg K Mg K Me < My K My (6)

Some of them (u,d,s) can be considered as light com-
pared to the scale Ay ~ 1 GeV at which the masses of the
first bound states non-protected by chiral symmetry oc-
cur. Ay ~ 4w F; is the reference scale in yPT expansions
in powers of p/Ay. A different question can be asked in
connection with the structure of the vacuum. Some quarks
(¢,b,t) can be considered as too heavy to form abundant
vacuum pairs. In this case, the characteristic scale is not
Ap but the lower scale Agcp. The reason is that we are
not interested in the production of massive hadrons but
in the creation of massive virtual gg pairs. The latter will
be most probable if the quark mass is of order Aqcp or
slightly lower (if m — 0, the chiral properties of the cor-
responding pairs tend smoothly to the massless case).
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This reasoning already singles out the strange quark
among all six quarks we know. Its mass ms ~ 160 MeV
(at p = 1GeV) [22] is sufficiently low compared to Ag
to legitimate a SU(3) x SU(3) chiral expansion. On the
other hand, m; is sufficiently close to Aqcp to expect a
significant presence of massive §s pairs in the vacuum.

We define the SU(Ny) x SU(Ny) chiral limit in QCD
by taking the first Ny quarks as massless and keeping the
remaining masses at their physical value. In practice, one
can consider such a limit for Ny = 2 or for Ny = 3. The
corresponding order parameters will be functions of the
remaining non-zero masses. For instance, the two-flavour
condensate is defined as

X(2,ms, .. (7)

) - mu}irrLIdl—>0<uu>,
and it is a function of mg as well as of the heavy-quark
masses denoted in (7) by the ellipsis. u(z) stands for the
lightest (u) quark field, and it can equivalently be replaced
in (7) by the d-quark, but not by the s-quark field. The
three-flavour condensate is then defined as

X@3,..) = lim X(2,ms,...).

ms—0 (8)
One expects that the effect of heavy-quark masses m,., my,
me on X(2) and X(3) remains small and could be eventu-
ally estimated. For simplicity, we shall neglect all effects of
heavy-quark masses in the sequel. In this approximation,
X (3) coincides with ¢(3) defined in (1). It is a clean probe
of the chiral structure of the vacuum of QCD with noth-
ing but three massless quarks: once one sets mg = 0, there
is no more massive quark left which would be sufficiently
light to pollute the vacuum |£2)3.

The situation is rather different in the two-flavour chi-
ral limit m,, = mgq = m — 0, keeping the strange quark
mass mg at its physical value. Since m; is not very large
compared to Agcp and the vacuum is polluted by massive
Ss pairs, it is difficult to relate X'(2) to the genuine con-
densate o(2) characteristic of the theory with nothing but
two massless quarks. This situation occurs as long as mg
remains of order Aqcp. One can gain more insight into
the m; dependence of X'(2) from the formula in Euclidean
space:

(wuwexp [—my [ 8s])s

22 =- (exp [—ms [ 5s])3

(9)

where on the right hand side the expectation value is taken
with respect to the vacuum of the SU(3) x SU(3) invari-
ant theory. It is seen that in the absence of correlations
between the strange and non-strange gq pairs, (9) implies
X(2) = X(3), in agreement with large-N, expectations.
For ms < Ap, (9) can be rewritten as
X2)=X3)+msZ; +..., (10)
where Z§ denotes the connected correlator of 5s and uu
pairs:
7% = lim [ da(3s(z)uu(0))con,

m—0

(11)
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Notice that in the limit m, 4 — 0, wu can be equally re-
placed by (@u + dd)/2. The correlator (11) measures the
violation of the OZI rule in the isoscalar scalar (i.e. vac-
uum) channel and it can be estimated using the experi-
mental information now available in this channel [11,12,
14]. Tt is related to the standard O(p*) LEC Leg(u) and it
turns out to be larger than what is expected on the basis
of large-N, considerations [7].

It is useful to express X'(2), X(3) and the correlator
((8s)(wu)) in terms of the eigenvalues A, of the Euclidean
Dirac operator. Neglecting heavy quarks, both X(3) and
Y(2) concern the theory with the same total number of
fermions: in X'(3), one sets m, = mg = ms = m — 0,
whereas in X(2) m, = mqg = m — 0 but ms; ~ Agcp
is held fixed. Hence, the corresponding Banks—Casher for-
mula becomes [1]

2(Ny) :lim% <<Z m271A2>> . (12
n n Ny

where the only difference lies in the determinant inserted
in the average over gluon configurations: A%(m,G) for
XY(3) and A?%(m,G)A(ms,G) in the case of X(2). Com-
paring the corresponding infrared parts (3) which are ex-
pected to dominate in (12), one has

m2 4+ \2 3
m3Wvl H ( a +w;1)
n<K H
< mz‘l’|m|"‘ H m + >\2 (m2 + )\%)
n<K LL +-WQ)

) (13)

as long as m — 0 and m, ~ Aqcp. This suggests that the
paramagnetic inequality (5) holds even in the presence of
massive strange quarks in the sea:

2(2) > 2(3). (14)

The conjectured inequality (14) will play an important
role in the sequel.

It remains to express the correlator (11) in terms of
Dirac eigenvalues; see e.g. [4]. One has

_ 3 1 m meg
Z; =lim <<Z ENS IR >> . (15)

nk

For small m and mg, only small Dirac eigenvalues con-
tribute and the expression (15) measures their correla-
tions. For my ~ m, Z{ describes the fluctuations of the
density of states p(A) = >, 6(A — A,) near A ~ 0. The
positivity of (15) is in agreement with the paramagnetic
inequality (14). In this paper, we investigate the possibil-
ity that multi-flavour QCD vacuum behaves as a strongly
correlated fermion—anti-fermion system characterised by
large fluctuations Z{ of the density of small Dirac eigen-
values.
Let us mention without proof that the present discus-
sion can be easily extended to the order parameter:
2 . 2
PN = lm P2 (16)
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defined as before by taking the first N quarks massless
and leaving the remaining quarks at their physical masses.
The dependence of these order parameters on Ny and on
the sea-quark masses is qualitatively similar to that of the
quark condensates.

3 SU(N¢) X SU(N¢) chiral symmetry
for Nf Z 3

We consider QCD with Ny = n + 2 light flavours which
is very like our actual three-flavour QCD equipped with
n copies of the strange quark degenerate in mass: u and d
quarks with ultralight degenerate masses m, = mqg = m
and n “strange” copies s1...S, with a common mass mg >
m but still light compared to the QCD scales.

In the chiral limit m = ms = 0, the SU(2+n) x SU(2+
n) chiral symmetry is assumed to be spontaneously broken
down to the diagonal subgroup SUy (n + 2). This symme-
try is explicitly broken by the mass difference ms; — m to
SU(2) x SU(n), which is the exact symmetry of our prob-
lem. We have (n+2)? —1 = n?+4n+ 3 pseudo-Goldstone
bosons: 3 pions of mass M, 4n kaons (us;,ds; for i =
1...n, plus conjugates) of common mass Mk, the n-meson
with structure X, = (1+2/n)~/2diag[1,1; —2/n...—2/n]
and mass M,,, and finally the extra n?—1 5;8; states whose
mass will be denoted as Mx.

This framework will be used to discuss the response
of order parameters of the chiral symmetry SUp(Ny) x
SUR(Ny) to large vacuum fluctuations both for Ny > 3
and for Ny = 2. We will see that these two cases behave
rather differently. It will prove useful to keep a generic
value for Ny, although our main interest will be on the
case Ny = 3 and all our conclusions apply to this case.

3.1 Multi-flavour mass and decay constant identities

For all n we are using the same O(p*) effective Lagrangian
as for the n = 1 case of [7] (except for one additional
invariant (VAUTVYUV,UTV,U), irrelevant for our pur-
pose). The LECs have an a priori unknown dependence
on n; therefore we keep the same notation for all LECs
with an extra index n. This is justified to the extent that
the symmetry properties are as described above.

The chiral expansion of Goldstone boson masses is very
close to the case n = 1 discussed in [14]:

F2M2 = 2mX(n + 2) + 2m(nm, + 2m) Z: + 4m>A,,
+4m? B, L+ F2MZd (17)
FAM3Z = (ms +m)X(n+2) + (mg +m)(nmg + 2m)Z8
+ (ms +m)?A, +m(ms +m)BE,L
+ my(ms +m)B2, L), + FEMzdgcn, (18)
FEM3% = 2m X (n + 2) + 2mg(nmg + 2m)Z5 +4m2 A,
+ 4m?Bg, L), + Fx M3 dxn, (19)
and likewise for F?M? (see AppendixA). The connec-

tion with the standard LECs of the N; > 3 effective La-
grangian is
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73 = 3zB§n{Lg ()

1 M?2 2 M?
R ) FoY- guin QTR Py 20
51272 [Og 2 T nr2e 8 ;ﬁ] } (20)

n M2 2 M?
~ o [loguf—kwloglﬂ"] } (21)
We have the ratio
_ X(n+2)
C F2(n+2)
and X'(n + 2) and F(n + 2) denote the condensate and
the pseudoscalar decay constant for all n 4+ 2 massless

quarks. The remainders F2M2%d% collect all higher-order
terms, starting at the next-to-next-to-leading order O(mg)
(NNLO) [hence d,, = O(m2)]. The (n-independent) com-
bination of chiral logarithms L has the same meaning as
in [14]:

Boy, (22)

L (23)

M3 M
= 59,2 l?)log K 4 log ]

_n
? M
whereas L’ contains all chiral logarithms involving the un-
physical mass Mx:

n—1 M? M?2
L = ——{log—1L — 1)log —X 24
which vanishes for n = 1 as it should. Similar expressions

are derived for the decay constants:

F2 = F2(n +2) + 2(nmy + 2m)&, + 2mé, (25)

2m Bo, M? M3 )
+ 167T2 {log]WIQ(+210g M,,? +F7re7'r’na
F2 = F2(n+2) + 2(nmg + 2m)&, + (ms +m)éy
+ mBon L +msBo, L., + Feexn, (26)
F2 = F2(n+2) 4 2(nm, + 2m)&, + 2m&, (27)

2m; Boy, M M3 )

while £}, is given in Appendix A. The scale-invariant con-

stants £, and én are related to the LECs Ly and Ly as
follows:

. 1 M?
n = 8Bon § L (1) — ——— log —X 1| 28
6 =880, {110 - gz s S b 9
gn = 8BO7L{L75L(:U)

The remainders Ff,epn collect the higher-order terms,

starting at NNLO [O(m2)].
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3.2 Low-energy constants

It is a simple exercise of algebra to combine (17) and (18),
and (25) and (26), to get the expression of the LECs:

2
73 D0+ 2) + (nr 4+ 2)mZ)]
4m?B2, r
=1—€(r)—dy— WT_ I(L_L;)a (30)
4m2A,, 4m?B2, 1
with
2
Tro —T FKMK
e(r):2r2_1, r2_2<FﬂMﬂ> —1. (32)

dy, and d}, are linear combinations of the remainders d .,
and dg,,:

r+1 2 ,
dp, = r_ldﬂ-n_ <6(7“)+r_1> dgn, dn_d’fb_dﬂ'n~
(33)
A similar work can be performed for the decay constants:
2mg ’ 2m By, ,
= ——F L L
Fg U(T) + en (7’ — ].)FE —+1r n
1 2 2
2mé F2(n+2)
(nr+2) 2 =1-n(r)—en ja2
QmBon
L L
r— 1)F72 +rL,
r+1 , M2
1 n 21 K
1672 ( 8oz Tk M};)] (35)

(36)

r+1 2
en = ern — | N(r) + —— | exn =€), + exn. (37)
-1 r—1
We recall that e(r) and 7(r) are suppressed at large values
of r (> 15). We expect then d!, < d,, ~ d, and €], <
En ~ €nn.
One easily checks that all the formulae displayed in this
section reduce to the mass and decay constant identities
obtained in [14] in the case n = 1.

3.3 SU(2) x SU(2) order parameters

In the SU(n + 2) x SU(n + 2) chiral limit (m = m,; = 0),
we define the dimensionless order parameters
2mX(n +2)

X(n+2)= e
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2mB0n
Y(n+2) = T (38)
F2(n+2)

The Gell-Mann-Oakes—Renner ratio X(n + 2) measures
the quark condensate in physical units, while Z(n + 2)
does the same for the decay constant. We have X (n+2) =
Y(n+2)Z(n+2).

We consider now the SU(2) x SU(2) chiral limit where
only m vanishes (and the n copies of the strange quark re-
main massive), in order to investigate the effect of massive
sea quarks on two-flavour chiral dynamics. We define the
quark condensate and the decay constant in this limit as

F2 M2

x(2) = Jy 2m7r’ F(2) = Jy Ey, (39)
and the dimensionless order parameters
x() =2
2= T2, (40)
X(2 2mB(2

From (17) and (30), we derive the expression for the
two-flavour condensate:

X(2)[1 = dun] = m”i >
x [1—e(r) —dn— [Y(n+2)f]
X+ 2), (41)

where a quantity topped with a bar is considered in the
limit m — 0 and

M? T nr+ 2
- Mr L—1I']— AZE), (42
fo= 5 (e - :).
7y = 23+ BL,AZ,
1 M2 2 M?
AZS = — |log 2 42 joetn| (43
Tl S VR Py OgMgl (43)

In a similar fashion, the two-flavour decay constant can
be read from (25) and (35):

nr
Z(2)[1 = Erp] = 1-— —en—Y(n+2
([ = Ern] = — ) (1 =n(r) —en = Y(n+2)g,]
Z(n+2 44
t s (n+2), (44)
with the quantities

M? r ,,or+1 01 M?

gn-‘zag<7~_1[L“Ln]*‘r_.1gzﬂz %% 312
— (nr+ 2)A£,i>. (45)

= . - - 1 M2

327 MIQ{
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fn and g, contain chiral logarithms of two different types
and signs: the first involve the masses of the Goldstone
bosons M i, x and are positive, while the latter are
negative and combine ratios of masses of the same meson,
considered in the massive theory and in the SU(2) x SU(2)
chiral limit (m — 0). We can estimate f, and g, by iter-
ating the previous mass and decay constant identities as
explained in Appendix A and B.

4 Connection between fluctuation
and order parameters

We want now to investigate the connection between chiral
order parameters and vacuum fluctuations. For a generic
n > 0, the mass and decay constant identities yield a very
simple expression of the two order parameters of funda-
mental interest, namely the condensate X'(n + 2) and the
decay constant F'(n + 2), in terms of the two OZI-rule vi-
olating LECs L4 and Lg. These two large- N, suppressed
constants directly reflect vacuum fluctuations of gg pairs
and they provide a convenient framework to discuss com-
pletely and transparently how these fluctuations affect the
order parameters.

The first step consists in eliminating the LECs A,, and
&, from the mass and decay constant identities for the pion
and the kaon (17) and (18) and (25) and (26), leading
to (30) and (35). Then we can reexpress the (OZI-rule

violating) constants &, and Z$ in terms of L, and Lg,
and obtain the two desired relations between the order
parameters X, Y, Z and the fluctuation parameters L4 and
Lﬁ:

X(n+2) = 1— () — du— [Y(n+2)Ppu/4,
Z(n+2)=1—n(r)—e, —Y(n+2)A\, /4.

(47)
(48)

The constants Lg and L4 enter the discussion through
the combinations

M M
Pn = 64ﬁ(nr +2)ALE, M\, = BZE(nr +2)ALY,

’ (49)
where the scale-independent differences AL} = L) —
L7 (1) involve the critical values of the LECs defined
as

n.cri 1 M?
L47C t(u) = 25672 log 7111;{
r
R —— =
8(r — 1)(nr+2)[ n]
1 r+1 Mg

log (50)

©256m2 (r— 1) (nr +2) © M2’

; 1 M? 2 M2
Ln,crlt _ 1 K 1 -n
o (1) = 5 (Og 2 nrop e >

C16(nr +2)(r — 1)

[L—L]. (51)

Comparing the fluctuation parameters A,, and p,, (49)
to 1 provides a quantitative measure of the effect of the
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LECs L4 and Lg on observable quantities. The effect dis-
appears if Ly and Lg are fine tuned to their critical values
(50) and (51), which for n = 1, r = 25, u = M, become
L§Y(M,) = —0.51- 1073 and L§*(M,) = —0.26 - 1073,

Notice that even a small deviation from the critical val-
ues is amplified by the large numerical coefficients in (49).
It is possible and convenient to absorb the NNLO and
higher-order contributions — represented in (47) and (48)
by the remainders d,, and e,, — into a multiplicative renor-
malisation of order and fluctuation parameters. Defining
the rescaled parameters as

L F2(n+2) 1 —n(r) — ey 2mBo,
TR0 e T Toe(n) —dn MZ
(52)
1—e€(r)—d,
Up = )\nkno Un = nkru kn r)= ———F~ 9
f )= Tt —enr
(53)

the two basic equations inferred from the mass and decay
constant identities take now the concise form

1

Zn + Zunyn =1, (54)
1 1

Zn + E'Unyn = y7 (55)

In addition, the multi-flavour quark condensate [ex-
pressed in GOR units, cf. (38)] can be rewritten in terms
of y, and z,:

X(TL + 2) = [1 - 6(7’) - dn]ynzrr (56)

At this place, a few remarks are in order.

(i) The above analysis holds for a generic n > 0, including
the physical case n = 1 of three flavours. On the other
hand, the case of two massless flavours (m = 0, ms non-
zero) requires a separate discussion based on (41) and (44)
above.

(ii) The relations (54) and (55) between the (rescaled)
order parameters y, z on one hand and the fluctuation pa-
rameters u, v on the other hand represent exact identities
which do not result from any approximation or expansion.
The influence of higher chiral orders — NNLO and beyond
— is entirely encoded in the rescaling factors (52) and (53)
through the remainders d,, and e,. The latter, defined in
(33) and (37), stem from O(p®) (and higher) contributions
to the mass and decay constant identities. They are both
of order dp,e, = O(m?) and should remain small unless
the whole xPT series blows up.

(iii) We expect the rescaling factors in (52) and (53) to
be close to 1. Two circumstances could spoil this expecta-
tion. First, if the quark mass ratio r were small (typically
r < 10), the quantity e(r) would get close to 1. On the
other hand, for » > 15 one has €(r) < 0.2 and n(r) < 0.07.
Such higher values of r are preferred by the new low-
energy nm scattering data [20], discussed in Sect.9. Sec-
ond, even if the remainders d,, and e, are small in the
physical case n = 1 (say 10% or less), their size could
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grow when n increases. We shall come back to the large-n
behaviour of the theory in Sect. 8. In either case, we would
not be allowed to treat perturbatively the rescaling factors
as close to 1.

(iv) Let us consider a solution of the generic system (54)
and (55) giving the order parameters y and z in terms
of the fluctuation parameters v and v. We can then read
from (31) and (34) together with (21) and (29) the fol-
lowing parameters of Leg: 2mBo,, Fg = F2(n+2), Ls(p)
and Lg(u)? as functions of r = mg/m, Ly(u), Le(p), the
NNLO remainders dyy,, diyn and eqpn, exn>. These ex-
pressions are then used in the study of other observables
(e.g. Goldstone boson scattering amplitudes) to eliminate
O(p?) and O(p*) LECs from the bare xPT formulae. In
particular, this procedure should be used when the NNLO
remainders are (iteratively) matched with two-loop xPT
expressions. The procedure described above — eliminating
constants of L.g in favour of observables — differs from
the one used in standard xPT, unless the fluctuation pa-
rameters v and v are small compared to 1. This might in
particular affect the outcome of standard analyses beyond
one loop [21].

(v) If wy,, v, < 1, the standard multi-flavour xPT may be
recovered in two steps. First, one constructs the pertur-
bative solution of the non-linear system (54) and (55) in
powers of uy, v, = O(my):

1
yn:]-+Z(un_vn)+§(un_vn)2+"'v (57)
z —l—lu —iu (up —vp) + (58)

n — 4 n 16 n n n A

Next, one returns to the original variables \,, p, in

(49) and to 2mBg, /M2, F?(n + 2)/F2? expanding the
rescaling factors in (52) and (53) around 1 in powers of
e(r) = O(my), n(r) = O(my,) and of the remainders d,,
en = O(m?). Matching the latter with the explicit two-
loop contributions to (17) and (18) and (25) and (26),
one reproduces the standard xPT expansion up to and
including O(p®) order.
(vi) In the physical situation of three massless flavours
(n = 1), the fluctuation parameters need not be small
enough to allow the power expansion of (57) and (58):
using the estimates for L§(M,) = 0.6-1073 (central value)
based on sum rules for the correlator ((au+dd)ss) [11,12,
14] and the recent determination of L}(M,) = 0.1-1073
(central value) from mK scattering data [23], one obtains
the rough estimate u; ~ 1.2, v; ~ 3.4 (for r = 25). As
pointed out in [4], important vacuum fluctuations of gq
pairs suppress the three-flavour condensate and destabilise
the xPT expansion.

This phenomenon is a particular consequence of (54)
and (55). Multiplying the latter by y and using (56), one
obtains the relation

2 If we include the identities for 7, we can also express the
constant L7 — see Appendix A

3 Alternatively, we can express all O(p*) symmetry-breaking
LECs as functions of r and the two order parameters X (n + 2)
and Z(n + 2), as discussed in [14] for n =1
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1—e(r)—d,

14+ +/1+v,/22
which is identical (in the physical case n = 1) to (9) of
[13].

To cope with possibly large values of the fluctuation
parameters u and v, it may very well be sufficient to re-
place the perturbative solution (57) and (58) of the sys-
tem (54) and (55) by its exact algebraic solution, and to
keep the perturbative expansion of the rescaling factors in
(52) and (53). Let us emphasise that the divergence of the
power series (57) and (58) is a question logically discon-
nected from the convergence of the expansion of rescaling
factors around 1: the former is related to a possible sup-
pression of the multi-flavour condensate and of the cor-
responding leading order of xPT, whereas the latter is
more a question of a global convergence of the yPT series
starting at NNLO order.

In the remaining sections of this paper we concentrate
on the non-perturbative analysis of the system (54) and
(55) and its consequences for the breaking of both SU (n+
2) x SU(n + 2) and SU(2) x SU(2) chiral symmetries in
various limits.

X(n+2)=2 (59)

5 Positivity and paramagnetic constraints

In this section we investigate the system of equations (54)
and (55) in the light of the positivity of the order param-
eters X(n+2), Y(n+2) and Z(n + 2) and of the conjec-
tured paramagnetic inequalities they have to satisfy [4].
We are mainly interested in the domain allowed by these
constraints in the plane of the fluctuation parameters u
and v. For simplicity, we omit further reference to n and
7, since the latter enter the system (54) and (55) only via
rescaling factors. The system admits two solutions for the
ratio of the order parameter y (related to Byy,):

2 2
y+71+\/1—|—v—u7 y_il—\/l—i—v—u'

These two solutions depend on the difference of the two
rescaled fluctuation parameters u (function of the LEC
L4) and v (function of Lg). Notice that v —u is related to
the particular combination 2Lg — Ly4. The square root in
(60) signals a non-perturbative resummation of vacuum
fluctuations as discussed in the previous section. For |v —
u| < 1, the Taylor expansion of y reproduces the xPT
series, whereas y_ is of truly non-perturbative nature.

The two branches y; and y_ can be considered as two
different sheets of the two-valued function y(v,u). These
sheets are tangent along the line v —u = —1 that coincides
with the boundary of the definition domain v > u — 1.
Along this boundary, y has the constant value 2. The two
branches y; and y_ are drawn in Fig.1 as functions of
v —u. When v — u increases, y, decreases and vanishes
asymptotically at infinity, whereas y_ increases and tends
to infinity for v —u — 07.

The system (54) and (55) yields the ratio y and the
(rescaled) decay constant z, both of which should be pos-
itive for an acceptable solution: the vacuum stability re-
quires r = yz > 0 and z is related to F%(n+2)/F2. As far

(60)
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Fig. 1. The two branches for y as functions of v — u. The solid
(black) branch is y4, while the dashed (red) branch is y_

u P u

Fig. 2. The two sheets for y in the (u,v) plane: on the left,
the y4+ sheet, on the right, the y_ sheet. The hatched (green)
regions are the allowed domains where y and z are both posi-
tive. The value of y at each boundary is indicated. The critical
line z = 0 of symmetry restoration is denoted with a dashed
(blue) line

as y is concerned, y, is positive in the whole half-plane
v—wu > —1 (where 0 < y < 2), and y_ is positive inside
the strip —1 < v — u < 0 (where y > 2). The positivity of
z, i.e. the condition z = 1 — uy/4 > 0, yields additional
constraints in the (u,v) plane, especially for v > 0. The
critical line z = 0 is the parabola v = u?/4, along which
y = 4/u. The condition z > 0 is trivially satisfied for neg-
ative u, but for u > 0 it leads on both sheets to (different)
non-trivial bounds.

As a result the whole domain of positivity of both y
and z is obtained. On the y4 sheet, one must have v > u—1
for u < 2, and v > u?/4 for u > 2. On the y_ sheet,
the positivity domain amounts to the part of the strip
u > v > u — 1 situated below the parabola v = u?/4.
These two domains are represented in Fig. 2.
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We now arrive at the constraints imposed by the para-
magnetic inequalities between order parameters discussed
in [4]. It was suggested that the chiral order parameters
that are dominated by the lowest eigenvalues of the Eu-
clidean Dirac operator are particularly sensitive to a para-
magnetic suppression arising from the infrared part of the
fermion determinant —i.e. from the light-quark loops. This
applies in particular to the decay constant F? and to the
quark condensate X': the more flavours from the total of
Ny = n + 2 become massless, the more suppressed the
fundamental order parameters get. As a corollary, X(2)
should be an increasing function of the strange quark mass
mg, as long as the latter is comparable to the QCD scale.
This suggests the two paramagnetic constraints

X(2)>X(n+2), Z2)>Zn+2), (61)
which can be reexpressed using the expressions of X(2)
n (41) and Z(2) in (44). They can be further simplified
using the notation of the previous section, and yield for
X and Z respectively

4 D 4 E
X:v> D [kf yz]’ 7z u> T F {kg y]’
(62)
where the NNLO remainders are rescaled: D,, = Jmo(m"qt
2)/(nr), By = €ry-(nr+2)/(nr), and f and g are positive
combinations of the chiral logarithms defined in (42) and
(45) and estimated in Appendix B.

The paramagnetic inequalities (61) yield therefore
lower bounds for the fluctuation parameters u and v.
These bounds are only useful if the ratio of order param-
eters y is large enough, for instance on the second sheet
where y could grow. But we do not expect (62) to have
much relevance, say, on the first sheet for large u and v.
Using the system of (54) and (55), we may convert these
lower bounds on the fluctuation parameters into upper
bounds for y. The constraints on X and Z yield respec-
tively

2

(1 - D)z ++/(1 — D)222 + 4kf’
1-z(1-FE)

< —mM8Mm=,

< ho

X:y<

Z:y (63)

From (63) and the discussion of the previous section,
we obtain the important result that y is necessarily non-
vanishing and finite on the physical domain of the two
sheets:

1 1
<min | ——, — | .

O<y_m1n<W,kg> (64)
Moreover, if y is large enough, (62) shows that u is pos-
itive, and thus z = 1 — uy/4 < 1. The paramagnetic in-
equalities in (61) lead therefore to bounds for the two main
SU(n+2) x SU(n+ 2) chiral order parameters X and Z.

In the case n = 1 and r = 25, the estimation procedure
detailed in Appendix B leads to Fig. 3 for v and v. We see
that only the upper right part of the (u, v) plane survives.
In particular, only a small fraction of the second sheet, far
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Fig. 3. [llustration of the paramagnetic inequalities on the two
sheets for n = 1 and r = 25 (upper: first sheet y, lower: second
sheet y_). The boundaries of the two sheets are indicated with
solid (green) lines, while the (blue) dashed line is the critical
parabola z = 0. The (black) line with filled circles indicates the
lower bound for v, derived from the paramagnetic inequality
for X. The (red) line with crosses indicates the lower bound for
u, derived from the paramagnetic inequality for Z. The NNLO
remainders D and E are set to 0

from the origin, remains available. Let us emphasise that
the paramagnetic inequalities yield such constraints only
if the two combinations of chiral logarithms f and g are
positive.

It is worth noting that the existence of minimal values
of the fluctuation parameters u and v does not contradict
xPT, which requires u,v — 0 in the chiral limit. The
minimal values (62) are indeed proportional to M2 as the
parameters v and v themselves, and therefore constrain
only how quickly v and v vanish in the chiral limit.

As a conclusion, the system (54) and (55) admits two
solutions for the ratio of order parameters y: they can
be considered as the two sheets of a two-valued function
y(v,u). In the (u,v) plane of fluctuation parameters, the
domain of definition of the two sheets is restricted by posi-
tivity constraints [vacuum stability, F?(n+2) > 0] and by
paramagnetic inequalities [X (n + 2) < X(2), Z(n+2) <
Z(2)]. As aresult, the first sheet is limited to positive (and
possibly very large) values of the fluctuation parameters
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u, v, whereas only a tiny region of the second sheet, far
from the origin but below u = 2,v = 1, is allowed.

6 The case of symmetry restoration

We investigate now the vicinity of the critical line where
the SU(n + 2) x SU(n + 2) chiral symmetry is restored.
Since we exploit results from the effective Lagrangian de-
scribing the spontaneously broken phase in terms of Gold-
stone bosons, we can comment only on the approach to
the chirally symmetric phase from the broken one (and
not on specific properties of the former phase, where the
SU(n+2) x SU(n + 2) chiral symmetry is restored).

The symmetry restoration is equivalent to the van-
ishing of the decay constant F in the chiral limit, viz.
Z(n+2) =0. In the (u,v) plane, the condition z = 0 cor-
responds to the critical line v = u?/4. The limit z — 07
can be reached on both sheets: on the y sheet the critical
line is approached from above and u > 2, while on the y_
sheet, the parabola v = u?/4 must be approached from
below and 0 < u < 2. On both sheets, the ratio of order
parameters has the value y = 4/u on the critical line.

We see that the vicinity of the origin in the (u,v) plane
on the second sheet plays a special role in the discussion:
y diverges there. The paramagnetic inequalities (64) how-
ever prevent us from reaching the vicinity of u = v = 0
on the second sheet: y is bounded and cannot become ar-
bitrarily large. The ratio of order parameters Y (n + 2)
remains thus finite when the critical line Z(n +2) = 0
is approached, so that the quark condensate X (n + 2) =
Y (n + 2)Z(n + 2) vanishes. This was expected since all
SU(n + 2) x SU(n + 2) order parameters must vanish as
chiral symmetry is restored.

It is also interesting to study the order parameters de-
fined in the SU(2) x SU(2) chiral limit m = 0. Equa-
tions (44) and (41) yield the two-flavour decay constant
and quark condensate:

nr

Z(2)[1 - éﬂn] = nr+ 2 [1 - 77(7“) - en]
X {1 - ynkn(r)gn + nQTZn} (65)
0 nrn:— 5 [1—n(r)—e)
x {1 - 74&;“157«)% } : (66)
XN ~dn] = —Z[l—clr) = d] (67)
) ]
y {1 _ lﬁkug’)f”} . (68)

As long as we are not in the vicinity of the origin
u = v = 0, we expect X(2) and Z(2) to remain close
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to 1 (for r > 20) along the critical line where the SU(n +
2) x SU(n + 2) order parameters vanish. We can under-
stand it by combining the definition of X (2) and Z(2), see
(40), with the Ward identities for the masses and decay
constants:

27s
X©2)[1 —dpn] = X(n+2)+nr2Fﬂ;j5;, (69)
2@~ o] = Z(n+2) +nr 2o (70)

For instance, the two-flavour quark condensate is the sum
of its SU(n +2) x SU(n + 2) counterpart and a LEC de-
scribing the violation of the OZI rule in the scalar sector.
We shall call the first term the “genuine” condensate —
stemming directly from the breakdown of SU(n + 2) x
SU(n+2) chiral symmetry — and the latter the “induced”
condensate — induced by the massive strange-like quark
pairs present in the SU(2) x SU(2) vacuum [24]. The same
analysis applies to the decay constants Z(2) and Z(n+2).
We see now clearly how SU(2) x SU(2) chiral symme-
try can remain broken while the SU(n + 2) critical line
is reached. Even though there is no genuine contribution
to the two-flavour order parameters, the vacuum is not
invariant under SU(2) x SU(2) chiral rotations because of
the symmetry-breaking transitions s;s; — %u + dd which
violate the OZI rule and are suppressed for N, — co.

Let us now move along the critical line towards the
origin u = v = 0 by changing the value of the fluctuation
parameters u and v (we must be on the second sheet to
do so). Equations (66) and (68) indicate a suppression of
X (2) and Z(2), leading finally to their vanishing:

X(2) >0 u>4kf.

Which order parameter vanishes first depends on the rel-
ative size of f and g: if g > (f/k)'/?, Z(2) vanishes before
X (2) does (and the other way round otherwise). The point
where at least one of the conditions (71) is fulfilled marks
the endpoint of the critical line: if we could proceed further
down the critical line, we would end up with an unphysical
situation where X (2) or Z(2) is negative.

One can check that the two conditions in (71) are
equivalent to the paramagnetic inequalities (62) along the
critical line z = 0 — where y = 4/u = 2/(v'/?) and
SU(n + 2) x SU(n + 2) order parameters vanish. This
was expected, since the paramagnetic inequalities along
the critical line yield X(2) > X(n+2) = 0 and Z(2) >
Z(n+2) =0, i.e. reduce to positivity constraints for the
two-flavour order parameters. On the second sheet, the
critical line ends thus at the edge of the domain allowed by
the paramagnetic inequalities. In the physical case n = 1,
and for » = 25, the right hand side of Fig.3 shows that
the inequality for v (i.e. for X)) is saturated first and that
the endpoint of the critical line corresponds to X (2) = 0,
Z(2) > 0. From AppendixB, we see that this occurs in
the physical case for any (large) value of r.

In this section, we have investigated the critical line of
SU(n+ 2) x SU(n + 2) symmetry restoration. Along this
critical line, both Z(n + 2) and X(n + 2) vanish, while

Z(2) > 0 4> u > 4kg, (71)
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Y(n+2) = X(n+ 2)/Z(n+ 2) remains non-zero and fi-
nite. We have studied the two-flavour order parameters
X(2) and Z(2) as well. In the regions of the two sheets al-
lowed by the paramagnetic inequalities, both are different
from 0. There is only one exceptional point on the second
sheet, where the critical line and the most stringent para-
magnetic bound intersect. At this endpoint of the critical
line, one of the two SU(2) x SU(2) order parameters van-
ishes — X (2) in the physical case n = 1.

7 No-fluctuation limit: n. — oo

We briefly sum up in this section the properties of another
interesting region in the (u,v) plane where the effect of
vacuum fluctuations is suppressed. This can be realised as
the large- N, limit of the theory. Since
u=0(1/N;), v=O0(1/N,), (72)
we deal with the vicinity of the origin on the first sheet.
The large- N, limit forces the perturbative solution of the
generic system (54) and (55):
y=1+0(1/N.), z=1+O0(1/N,). (73)
The analogy between 1/N. expansion and xPT ceases
here. The large-NN,. limit does not have much to say about
the expansion of the rescaling factors in (52) and (53)
— except perhaps by providing estimates of higher-order
counterterms included in the NNLO remainders d,, and
€n. Combining the result (73) with (52) and (53) one gets
for large N,

X(n+2) = 1—€(r)—d,, Z(n+2)— 1—n(r)—en, (74)
From (41) and (44), we are now able to infer the two-
flavour order parameters X (2) and Z(2) in the large-N,
limit. One of course expects to reproduce (74) — any de-
pendence on the number of flavours should disappear at
the leading order in 1/N.. One first remarks that

fn= O(I/NC), 9n = O(l/Nc),

so that for N, — oo the right hand sides of (44) and (44)
both coincide with the one given in (74). It remains to
show that the NNLO remainders d,, = lim,,_,o d,, and
€xn = lim,,0er, are also suppressed for large N.. In-
deed, the large- N, counting of connected QCD correlation
functions yields

(75)

lim

lim
N.—oo 8ms

Ne—o0 O

log(FZM2) =0, log(F2) =0,

(76)
order by order in powers of quark masses, since the in-
volved quantities receive contributions only from con-
nected graphs with two (and more) fermion loops. This
shows the suppression of d.n and €., and thus the de-
sired result:

X(n+2) = X(2)+0O(1/N.), Z(n+2)=Z(2)+0O(1/N,.).
(77)
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Both the condensate and the decay constant are indepen-
dent of the number of massless flavours, and for not too
small » both X and Z are close to 1. For completeness,
we mention the leading large- N, behaviour of the LECs
Ls(p) and Lg(p), which can be read off from (31) and
(34):

F? )
Ls = 8M72r [77(7") + 671,}[1 - 77(7’) - en]kn(T), (78)
Lg = 15‘]\}2 [e(r) + d)][1 —e(r) — dp]kn(r).  (79)

Notice that the scale dependence only shows up at the
next-to-leading order. The OZI-rule suppressed constants
L4 and Lg remain O(1) at large N... They determine how
quickly the fluctuation parameters vanish as IV, increases.

8 The limit of large fluctuations

We have seen that both multi-flavour (Ny > 3) xPT and
1/N. expansion require small fluctuation parameters u
and v. On the other hand, in the real world with three
light flavours (n = 1), the fluctuation parameters uq, vy,
as well as the difference u; —v1, are not small compared to
1. Sum-rule studies [11,12,14] suggest a significant though
small deviation of the LECs Lg(u) and L4(u) from their
critical values (50) and (51). The large coefficients in (49)
then amplify this deviation resulting into fluctuation pa-
rameters well above 1. We will now study the effect of large
fluctuations on the pattern of chiral symmetry breaking.

8.1 Many-flavour limit

QCD does not contain an obvious parameter which could
allow one to describe the limit of large fluctuations. In-
deed, in the limit n — oo, the effect of sea-quark pairs,
such as the induced condensate or the OZI-rule violation
in the vacuum channel, are enhanced. However, a large-
Ny limit with IV, held fixed would presumably meet phase
transitions, leading eventually to the restoration of chiral
symmetry and the loss of asymptotic freedom. The defini-
tion of a large-fluctuation limit at the level of QCD is thus
likely to require a combined limit of large N; and large
N.. However, at the level of the identities of the effective
theory, we are allowed to take the formal limit n — oc.
We will see that this limit provides a natural example of
large fluctuations, if we make the assumption that in this
limit the pseudoscalar masses and decay constants remain
finite order by order in powers of quark masses m and m.

Indeed, with such an assumption, the fluctuation pa-
rameters p and A grow with n, unless the constants L} (i)

and L2 (p) are set to the asymptotic values of L}

n,crit
Lyt

and

Li(p) = LY (1), Lg(p) = L™ (w); (80)
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where

1 M3 2 M3%
LP(p) = 2L (1) = 25672 (10g F - ﬁl e )
")
From the chiral expansion of the masses and decay con-
stants, (17) and (18) and (25) and (26), and assuming that
they remain finite order by order in powers of m and myg,
one can read the a priori unknown large-n behaviour of
Y(n+2), Z, &, € and Ay,
Y(n+2)~Z~En~l/n, Ay ~&n~ 1 (82)
The constraint on Y (n + 2) is imposed by the presence of
the logarithmic term (absent in the physical case n = 1):

2

My
log —X — —oo0.

L~ i

167T2 (83)

This implies in turn that Lg should grow like n, whilst L}
should approach a finite value, which need not coincide
with the critical asymptote (81).

Actually, the same large-n behaviour of the theory is
also imposed by the paramagnetic inequalities, provided
that f,, and g, defined in (42) and (45) are positive:

f nr %ﬁ 2 1 M% X Mz
N -l LS Rl V- A S VE M2
= nls > 0. (84)

The paramagnetic inequality for Z — second inequality in
(63) — implies that y vanishes like 1/n (or more quickly).
The limit y — 0 is allowed only on the first sheet (y;)
and (60) leads to v,, — u,, — oo like n? (or more quickly).
On the other hand, the paramagnetic constraint for u —
second inequality in (62) — leads to u = O(n), unless a
cancellation between kg and E/y occurs. Such a cancel-
lation between the NNLO remainder E and the one-loop
chiral logarithms g cannot be logically ruled out. It would
however stand against our initial assumption that the chi-
ral expansions exhibit a good overall convergence starting
at the NNLO order independently of n.

Let us now describe more precisely the large-n be-
haviour of u and v. Since w is positive, z = 1 — uy/4
cannot diverge. Let us write zo, = lim,,_,~ 2z, and intro-
duce a second parameter a such that

4n

u~—(1-2y), v~dn?/a®, y~a/n. (85)
a

a and z, describe the behaviour of the fluctuation param-
eters u and v. The order parameters tend to finite values:

X(n+2) —

Z(n+2) - ( n(r) — €n)zoo,
X(2)[1 —dpn]) = 1—¢€(r) —dn, (86)
Z(2)[1 = érn] = [1 —n(r) — en][l — aklx].

In this limit, the LECs associated with the decay constant
identities remain scale-dependent — Ls = O(n) and L4 =
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O(1) — whereas the LECs arising in the mass identities
become

Lg () ~ 716:;@2 ]\% (87)
100~ g5z (T ) )+ g (59

A comment is in order here about the double limit of large
N, and Ny, investigated in [24]. If we consider the large-
n formulae for the LECs L 555 [see (87) and (88)], we
can recover their standard behaviour in the large- N, limit,
provided that N. ~ n and a = O(N,), i.e. a = F2/A? with
A an N-independent scale®.

The large-n limit of the theory illustrates therefore
how the large-fluctuation limit can be formulated consis-
tently: the multi-flavour quark condensate is then sup-
pressed whereas the two-flavour condensate X (2) remains
different from zero (and close to 1 for r > 15).

8.2 Large fluctuation parameters in three-flavour QCD

The many-flavour limit of the theory discussed above
should merely be viewed as a particular realisation of the
limit of large fluctuations which is hopefully consistent
but not necessarily unique. The limit of large fluctuations
could as well be formulated directly in terms of fluctua-
tion and order parameters keeping the number of flavours
fixed to Ny = 3. In that case (n = 1), one avoids the pres-
ence of extra n? — 1 Goldstone boson X states arising for
n > 1. Since the limit is designed in a slightly different way
from the previous section, we are ending up with similar
but not identical results for the LECs and the two-flavour
parameters.

One may infer from the generic (54) and (55) the lines
in the (u,v) plane corresponding to a constant value of
z=2z (0< 21 <1):

4 4
u=—(1—-21), v=—=(1-yz).
y y?
It is seen that keeping z fixed and setting y — 0 one
reproduces the large-fluctuation behaviour (85). The de-
cay constant Z(3) = [1 — n(r) — e1]z; remains non-zero,
whereas the three-flavour condensate vanishes asymptoti-
cally:

(89)

X(3) = (90)

In this large-fluctuation limit for n = 1, all relevant LECs
appearing in the original mass and decay constant iden-
tities can be predicted in terms of r = m,;/m and of the
parameter Y (3) = X (3)/Z(3) — 0. The leading behaviour
of Ls and Lg is then

(1 —n(r) —ei]z1y — 0.

F2 n(r) + ¢}

L~ e v

: (91)

4 Needless to say that the “holomorphic phase” analysed in
[24] is outside the scope of the present discussion which is ex-
clusively based on an effective theory describing the breakdown
SU(Ny) x SU(Ny) — SUv (Ny)
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F? e(r)+d;
16M2 Y2(3)
Notice that the OZI-rule violating constant Lg(u) is no
more suppressed [to be compared with the large-n result

(87)]. This is best seen from the ratio Lg/Lg which in the
y — 0 limit becomes

i Le(p) _ 1—e(r)—d;

It amounts to Lg/Ls = 0.43, 0.79, 1.53 for r = 20, 25, 30
respectively. The second OZI-rule violating ratio Ls/Ls
still depends on the order parameter Z(3):

La) _ 1=n(r) — Z(3) — 1
0 Io(u)  (r+2)(r) + €]

This ratio could be more suppressed provided Z(3) is close
to 1. In the latter case the expression (94) could be rather
sensitive to the NNLO remainder e, contrary to the case
of the ratio (93) where d; competes with 1 (recall that
both dj and €] are suppressed by an extra power of 1/r).

It remains to work out the two-flavour order parame-
ters X(2) and Z(2) in the y — 0, n = 1 large-fluctuation
limit:

Ls (92)

(93)

(94)

- r

XO) = dn] = (=) —d) . (99)
2()1 —em) = (1 =) —e) =220 (90)

Despite the vanishing of the three-flavour condensate X (3)
— 0, the two-flavour condensate X (2) remains non-zero
and close to 1, provided r = mg/m is not too small. This
effect is entirely due to the induced condensate and it
is proportional to the strange quark mass. It is worth
stressing the fundamental difference between the chiral
symmetry restoration which occurs along the critical line
v = u?/4 for finite u and v and the large-fluctuation limit
in which (u,v) — oo. This difference merely occurs for
three-flavour order parameters: whereas in the symmetry
restoration case both Z(3) and X (3) vanish and their ratio
Y (3) = X(3)/Z(3) remains non-zero, the large fluctuation
limit is characterised by a continuous decrease of Y (3) and
of the condensate, with the decay constant Z(3) held fixed.
This manifestation of large fluctuations need not corre-
spond to a phase transition: they would lead naturally to
a spontaneous breakdown of chiral symmetry with a very
small (but non-vanishing) quark condensate. In this con-
text, the recently proposed “no-go” theorems [25] — stating
that the vanishing of the condensate implies a vanishing
pion decay constant and chiral symmetry restoration — do
not necessarily apply.

The limits of small and large fluctuations and of chi-
ral symmetry restoration are summarised in Fig. 4, while
the corresponding results for the order parameters are col-
lected in Table 1.

9 Two-flavour chiral perturbation theory

The striking outcome of the previous analysis is the per-
sistence of a large two-flavour condensate X(2) even when
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Fig. 4. Limits of small and large fluctuations, and of chiral
symmetry restoration on the y; sheet for n = 1: the shaded
region around the origin denoted N, corresponds to the domain
of application for the large-N. limit, the arrow illustrates the
large-fluctuation limit u,v — oo, and the “y rest.” border is
the critical line of chiral symmetry restoration where z = 0

the multi-flavour condensate X'(Ny) [Ny > 3] is suppres-
sed. We have seen that X (3) could be well below 1, indi-
cating that the expansion of F2M2 in powers of my,,mg
and mg need not be dominated by the genuine condensate
term (m, + mq)X(3). Actually, the whole Ny > 3 xPT
treated in the standard way can exhibit instabilities, not
because of too large a strange quark mass, but rather be-
cause of too sizeable vacuum fluctuations of gq pairs. On
the other hand, the expansion of the same quantity F2M?2
in powers of m,, mq only is expected to be dominated by
the Ny = 2 condensate term (m,, +mq)X(2). Indeed, for
not too small r = my;/m > 15, the result X(2) ~ 1 is
emerging independently of the fluctuation parameters u
and v reflecting an important contribution of the induced
condensate. This suggests that for suitable pion observ-
ables, the standard SU(2) x SU(2) xPT [6] could be a
well-convergent expansion scheme.

In order to gain more insight into the different be-
haviour of two- and multi-flavour chiral dynamics, it is
convenient to rewrite the N g = 2 Ward identities gener-
ating the expansion of F2M?Z and of FZ in a form as close
as possible to Sects.3 and 4. They involve the conden-
sate X(2), the decay constant F?(2) and the two O(p*)
symmetry-breaking scale-independent LECs ¢3 and ¢4 [6]:

2B2(2)
F2M? = 2m2(2) + mT;)(% — T3) + F2M25, (97)
Y5
B(2) -
P2 = p2(2)+ "By | g (98)

472
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Table 1. Values of chiral order parameters in three different limits (n = 1). The
second column corresponds to small fluctuations (large-N. limit). The third one
stands for the large-fluctuation limits (y — 0, z set to z1). The fourth one indicates
chiral symmetry restoration (z — 0, y set to y1)

Limit N, — o0 Large fluct. (y — 0) x rest. (z — 0)
u1 0 41 —2z1)/y 4/y1
v 0 A1 = yz)/y? A/yt
1—¢€(r)—di 1—€(r)—di
Y(3 —_— 0 —_—
S =) —e”
Z(3) 1-n(r)—e 21l =n(r) — el 0
r+2z11—n(r)—e r 1—n(r)—e
Z(2 1- — 1-—
(2) nr) —er T T = [l —yiki(r)g1]
X3) 1—e€(r)—di 0 0
r 1—e(r)—di r 1—¢(r)—di 2
X (2 1-— - = = 1-—
(2) e(r)—dv T—d. P R . (L —yika(r) fi]

Here B(2) = X(2)/F?(2) and the NNLO remainders &
and ® are O(m?), expected to be of order 1%. The anal-
ogy with the multi-flavour case can be pushed further by
rewriting (97) and (98) in the form of (47) and (48):

X(2)=1-6-Y(2)%p/4, Z(2)=1-e-Y(2)\/4, (99)

where
p=§;ﬁ§@&—&% A:§;i§M4 (100)
The simple rescaling
i= N, ©=ph, k:(f:gy (102)

brings the two-flavour mass and decay constant identities
into the standard form (54) and (55):

U

I\

+ (103)

|
Il
\.b—‘

2+ -0 (104)

N g
S|
Il

Q| =

The formal analogy is now complete. In the two-flavour
case the factors €(r) and 7(r) have to be omitted in the
rescaling factors, but otherwise all equations look identi-
cal. Where is the difference?

The multi- and two-flavour cases behave differently be-
cause the corresponding parameters v and u (or p and \)
are respectively of a different origin and magnitude. We
know from the previous discussion that the two-flavour
quantity ¥y ~ 1, and consequently, the parameters v — @

5 The remainder e should not be confused with the function
€(r) introduced in Sect. 3.2

and % cannot be too large. This in turn excludes an un-
limited growth of |3]. As a consequence one may expect
the perturbative solution of the fundamental equations
(103) and (104) [obtained by Taylor expanding the non-
perturbative solution] to make sense.

We have already emphasised the connection of the
multi-flavour parameters v,,u, (n > 1) with the corre-
lations between vacuum strange and non-strange gq pairs
and (last but not least) with the fluctuations of small Eu-
clidean Dirac eigenvalues [4]. We do not know much about
the importance of these fluctuations from first principles,
but we do understand why in the Ny > 3 theory such fluc-
tuations manifest themselves through important OZI-rule
violations in the vacuum channel J” = 0%. Hence, if the
quark pairs in the vacuum are strongly correlated and/or
the low-energy Dirac spectrum is subjected to large fluctu-
ations, the multi-flavour parameters wu,,, v, are likely large
and the perturbative solution of the corresponding fun-
damental equations (54) and (55) breaks down. On the
other hand, in a Ny = 2 theory and in the presence of
massive (ms ~ Aqcp) strange quarks in the sea, the same
cause does not produce the same effect. In this case, the
fluctuations of small Dirac eigenvalues are much harder to
relate to low-energy observables: the OZI-rule is inoper-
ative in this case, and the scalar correlator ((au)(dd)) is
chirally invariant and not simply related to an observable
order parameter. The different nature of the parameters
u and v is further illustrated by a different behaviour in
the large-N, limit: whereas the multi-flavour fluctuation
parameters u,, v, for n > 1 are suppressed as O(1/N.), @
and ¥ behave as O(1) since the constants ¢3 and ¢4 behave
like O(N..).

The fact that ©,% (or p,\) as well as the LECs /3, {4
need not be enhanced by fluctuations of small Dirac eigen-
values can be seen directly by comparing (matching) the
multi-flavour mass identity (17) with its Ny = 2 counter-
part (97). In the former, the vacuum-fluctuation contri-
bution resides in the term Z3 containing the LEC Lg(u).
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(97) is a reexpression of the same mass identity in terms of
SU(2) x SU(2) quantities. Both identities have to match
order by order in m. At the first order, one obtains the
expression for the two-flavour condensate:

2@) = Z(n+2) +nmZs + S)dp,  (105)
which absorbs the major part (the term proportional to
ms) of the vacuum-fluctuation contribution (nmgs+2m)Z*°.
nmsZ3 is what we have called the induced condensate [4,
24]. The remaining part of Z° contributes together with
A, (i.e. Lg) to the Ny = 2 LECs {3 and ¢4, but this contri-
bution contains neither mg nor the flavour factor n. Con-
sequently, there is no particular reason why fluctuations
of small Dirac eigenvalues should enhance the parameters
v and u and to destabilise the two-flavour standard xPT.

The non-perturbative effects in the non-linear system
(103) and (104) start to show up for |o—a| ~ 1 correspond-
ing to |f3] ~ 35. At this point, it is worth stressing that
the original standard estimates of ¢3, ¢4 [6,7] make use of
Ny = 3 observables assuming the approximate validity of
the OZI-rule in the scalar channel. Since vacuum fluctu-
ations do contribute to (3, {4, the standard estimates [6,
7 43 = 2.9+ 2.4 and ¢4 = 4.3 £ 0.9 could be modified by
OZI-rule violating effects.

In order to relate 5, £4 to Ny = 3 observables in-
cluding OZI-rule violating vacuum fluctuations, one may
proceed as follows. First the two-flavour mass and decay
constant identities (97) and (98) are equivalently rewrit-
ten to express £3, /4 in terms of the order parameters X (2)
and Z(2):

03 :327r2]\122i((22)) 1—5—(1—5)2((2)) . (106)
;o2 F22(2)
0y =87 W[l —e—Z(2)]. (107)

Next, one uses (67) and (65) relating X(2) and Z(2) to the
multi-flavour order parameters y,, and z,. In the case of
three flavours (n = 1) the latter may be written as

2(2) = —5[1=n(r) = (e~ e ...

x {1—y1k‘1(7“)gl —I—izl}, (108)
X(2) = 7ni2[1 —e(r) = (dy — doy ..)]

< {1 k() f b fym} , (109)

where the ellipses stand for terms of order (€x1)?, (ds1)?
as well as e;17(r) and d1€(r). Since &,1,dr1 = O(m?)
are expected to be of order 0.1 or less, the dotted terms in
(108) and (109) can hardly exceed 1%. Furthermore, the
leading O(m?) terms cancel out in the differences e; — &1
and d; — dy1. As a result, the whole contribution of the
NNLO remainders in (108) and (109) is O(mms), i.e. they
can be expected of order 3%.

It is instructive to exploit the above relations and to
estimate the order parameters X (2), Z(2) and the LECs
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U5, 04 that correspond to the extreme cases of no fluctua-
tion (N, — o0) and large fluctuations (y; — 0). Neglect-
ing all NNLO remainders, one gets for N, — oo

X(2) = 0.905, Z(2) = 0.949,

=20: 2 =
" 7y = 2.0,

110
73 = —7.5, (110)

X (2) =0.955, Z(2) = 0.959,
I3 = —0.6, ly=1.5,
These estimates are quite compatible with standard ex-

pectations [6,7]. On the other hand, one gets in the limit
of large fluctuations (taking z; = 0.7)

r=25: (111)

X(2) =0.822, Z(2) = 0.922,

=20: _ =
" ls = —202, 7, =32,

(112)
X(2) = 0.884, Z(2) = 0.938,

=25: 2 -
" 7y =24,
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Iy = —9.6, (113)

As expected, large vacuum fluctuations push f3 to-
wards larger negative values, without however reaching
the range in which the two-flavour yPT would start to di-
verge. The above estimates should be taken with caution:
even the small remainders in (108) and (109) of the order
of a few per cent can give an important contribution to /3
and /4 since the latter involve X (2) — Z(2) and 1 — Z(2)
respectively.

The information on low-energy mm phases extracted
from the new E865 Brookhaven K.4 experiment [15] com-
bined with older data on I = 0 and I = 2 S-waves [26],
have been used recently to extract the two-flavour or-
der parameters X (2),Z(2) as well as the LECs /3, /4 in
a model-independent analysis [20] which is merely based
on the numerical solution of the Roy equations [16]. The
result of this analysis reads

X(2) =0.8140.07,
l3 =—17.8+15.3,

Z(2) = 0.89 £ 0.02,
0, =4.1+0.9.

(114)
(115)

It is compatible with the estimates given above, and espe-
cially with the ones corresponding to the large-fluctuation
limit.

We would like to close this section with a comment em-
phasising the importance of the new precise w7 scattering
data recently published [15], forthcoming [27] or expected
in the near future [28]. Some time ago it has been pointed
out [29] that no experimental test of the actual size of the
quark condensate and of the magnitude of the quark mass
ratio r = my/m was available. No particular mechanism
of xSB was anticipated at that time and a general (less
predictive) expansion scheme (generalized chiral pertur-
bation theory or GxPT) was proposed to analyse data in
a model-independent way. Furthermore, there was no or
little experimental evidence for the substantial violation
of the OZI rule in the scalar channel that supports today
the idea of important vacuum fluctuations and a sizeable
difference between the two- and multi-flavour condensates.

On the other hand, the present conclusion that X (2)
is close to 1 and its consequences for the standard two-
flavour xPT might appear at first sight as a result that
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we could have anticipated using nothing but theoretical
arguments similar to those in this paper — contradicting
therefore the claims made in [29]. As a matter of fact, this
conclusion can be drawn only if one gets extra (and in-
dependent) information about the size of the quark mass
ratio r = myg/m, excluding small values such as r ~ 10.
In the present paper, a larger value of r was assumed
from the onset. If » happened to be small, the factor
€(r) = 2(ro —r)/(r?> — 1) would get close to 1, affecting the
rescaling factors in (52) and (53) and in (56). According
to (109), X (2) would then be suppressed independently of
the size of vacuum fluctuations. Because of the inequali-
ties X (2) > X (3) > 0, both X (3) and X (2) — X(3) would
then be suppressed. Hence, for small r, the vacuum fluc-
tuations and the induced condensate would enhance X (2)
less significantly, implying a weaker violation of the OZI
rule in the scalar channel. In all cases, a strong correlation
between r and X (2) [not X (3)] persists [4,13]. Hence an
important result of the new and/or forthcoming 77 scat-
tering experiments is — among other issues — to put a lower
bound on the quark mass ratio r, ruling out small values
of the two-flavour GOR ratio X (2). A precise quantita-
tive statement of this lower bound is subject of a detailed
SU(3) x SU(3) analysis of w7 scattering along the lines of
the present paper. Such an analysis is in progress [30].

10 Conclusion

(i) Chiral order parameters may exhibit a strong depen-
dence on the number of light flavours. Such a phenomenon
can be interpreted as an important effect of sea-quark
pairs, which is related to a large violation of the OZI-
rule observed in the scalar channel and reflects significant
fluctuations of the lowest modes of the Euclidean Dirac
operator. In this paper we have focused on the precise
interplay between chiral order and fluctuations.

(ii) We have highlighted the particular role of the strange
quark, whose mass my ~ Aqcp is light enough to popu-
late the vacuum with massive ss pairs, but heavy enough
to have influence on the properties of the SU(2) x SU(2)
chiral limit with m,,mg — 0 and my fixed at its physical
value. In particular, the two-flavour condensate X'(2) =
—lim,,, m,—o0(@u) does receive an extra contribution from
the massive vacuum 5s pairs through the OZI-rule vio-
lating and SU(2) x SU(2) symmetry-breaking correlation
{(uu)(8s)). The latter is referred to as the induced conden-
sate. Such contribution is absent in the SU(3) x SU(3)
chiral limit m, 45 — 0, since the remaining quarks (c,
b, t) are too heavy to contribute significantly to vacuum
fluctuations. This may lead to significant differences in the
manifestation of chiral symmetry breaking in the two- and
three-flavour chiral limits.

(iii) To probe the effect of massive quark pairs on chi-
ral symmetry breaking, we have introduced a theory with
two ultralight u,d quarks and n degenerate copies of the
(massive) strange quark. QCD can be recovered as the
particular case n = 1. Because of the mass hierarchy
My,d K ms <K Ap, two different chiral limits can be con-
sidered in this model: the two-flavour limit, where only
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My,q — 0 but mg # 0, and the multi-flavour limit, where
all Ny = n + 2 light masses vanish.

(iv) The multi-flavour case is characterised by two fluc-
tuation parameters which measure the violation of the
OZI-rule in the scalar sector. They are related to the two
large- N, suppressed O(p*) constants Lg (1) and Ly(u). We
have shown that the Ward identities yield two non-linear
relations between the fluctuation parameters and the two
basic multi-flavour order parameters: the quark conden-
sate X (Ny) = 2mX(Ny)/(F2M?2) and the Goldstone bo-
son decay constant Z(Ny) = F2(Ny)/F2 (where F(Ny) is
the pion coupling constant F2 in the chiral limit). These
relations are a direct consequence of the Ward identities:
all higher chiral orders (NNLO and beyond) are absorbed
into a finite multiplicative renormalisation (rescaling) of
the order and fluctuation parameters. The effect of this
renormalisation remains small (i.e. rescaling factors ~ 1)
provided that the chiral series globally converge from the
NNLO order.

(v) Taking the SU(2) x SU(2) limit m,,mg — 0 of the
mass and decay constant Ward identities, one obtains the
two-flavour condensate X (2) and decay constant Z(2) in
the presence of n copies of massive s-quark pairs in the
sea. We can then compare multi- and two-flavour order
parameters as functions of fluctuation parameters:

(1) Multi-flavour chiral symmetry is restored along a crit-
ical line in the plane of fluctuation parameters. Along this
line, the multi-flavour condensate X (Ny) and decay con-
stant Z(Ny) both vanish, but their ratio X/Z stays fi-
nite and non-zero. The two-flavour condensate and pseu-
doscalar decay constant do not vanish in this limit, except
in one exceptional point corresponding to the endpoint of
the critical line.

(2) In the case of small fluctuations, we recover a large-
N, mean-field type behaviour. The order parameters then
do not depend on the number of light flavours, and the
quark condensate is the dominant signal of chiral symme-
try breaking.

(3) In the opposite limit of large fluctuations, the multi-
flavour quark condensate X (Ny) tends to zero, but chiral
symmetry remains spontaneously broken, since the decay
constant Z(Ny) stays away from 0. Correspondingly, the
two-flavour order parameters receive large contributions
from massive sea-quark loops, so that their size is natu-
rally large, and close to the one expected in the large-N,
limit. We would like to stress that the presence of large
fluctuations is not necessarily related to the occurrence of
a phase transition: they could constitute a feature of the
dynamics of the theory, implying in turn a naturally small
size of the quark condensate. In this case the two-flavour
condensate would be exclusively made of the induced con-
tribution from the massive quark pairs in the vacuum.
(vi) The usual treatment of Ny > 3 xPT considers fluc-
tuation parameters as small, which requires a very precise
fine tuning of the O(p*) constants Lg and Ly. On the other
hand, the available information about the OZI-rule viola-
tion in the scalar channel suggests that fluctuations can be
enhanced due to the large effect of sea quarks. Such large
fluctuations destabilise chiral expansions by suppressing



S. Descotes-Genon et al.:

the lowest order of the series (three-flavour quark con-
densate), but they need not spoil the overall convergence.
To cope with such a situation, we propose to treat the
fluctuation parameters (related to the OZI-rule violating
LECs Ly and Lg) non-perturbatively when expressing the
parameters of the effective Lagrangian in terms of observ-
ables. In practice it amounts to replacing the perturbative
solution of the non-linear relation between order and fluc-
tuation parameters (expressed as an expansion in powers
of the latter) by the corresponding exact algebraic solu-
tion. In this way one can reexpress the low-energy con-
stants mBy, Fy, Ls, L7 and Lg in terms of the two fluc-
tuation parameters, the quark mass ratio r = ms/m and
higher xPT contributions arising through the (hopefully
convergent) expansion of rescaling factors around 1. This
procedure corresponds to a non-perturbative resummation
of the fluctuations encoded in L4 and Lg.

(vii) We have shown that vacuum fluctuations do not sup-
press the two-flavour condensate. The Ny =2 GOR ratio
X (2) remains close to 1 and the standard two-flavour xyPT
is likely a well-convergent expansion scheme, provided that
the quark mass ratio r is not too small. A lower bound on
r can be inferred from precise low-energy mm scattering
data.

(viii) Additional observables (Goldstone boson scatter-
ing, decay form-factors, ...) would have to be analysed
along similar lines, considering their chiral expansion up
to NNLO and making explicit the non-perturbative de-
pendence on the fluctuation parameters. We will illustrate
more precisely this point for 77 and 7K scattering param-
eters in a future publication [30]. Applying this method
to a sufficiently large set of precisely measured observ-
ables should allow one to pin down the size of vacuum
fluctuations, to disentangle the effect of massive §s pairs
on the pattern of two-flavour chiral symmetry breaking
and to determine by how much three-flavour chiral order
parameters are suppressed. This will eventually lead to
a better understanding of the spontaneous breakdown of
chiral symmetry and its dependence on the number and
hierarchy of light quarks.
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Appendix
A Goldstone boson masses
in multi-flavour QCD

We want to discuss in this section how to combine the
Ward identities for the masses and decay constants of the
Goldstone bosons. We are going to see that we need as
input My, Mg, Fr, Fx and M, to fix the values of the
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O(p*) LECs as functions of r, By, and F?(n+2), and then
to obtain the values of the remaining observables F7$7 M%
and F%.

First, we have to spell out all the Ward identities con-
cerning the masses and decay constants of the Goldstone
bosons. The masses and decay constant identities for the
pion and kaon were given in (17) and (18) and in (25) and
(26). The Ward identities for the extra X states can be
expressed in the more practical form

FiM% A F2M? (116)
FEMZ ~ r+1 | F2ZMZ
4r F2M? F2 M?
o d n Tt X Xd n
Fr 1K TRz e g X
F% F? 1 Mﬁ
2 2 2
log M2 flog M2 + F2
2
+ ngem — 2eKn. (117)
K

We have not discussed yet the identities for the n, which
can be recast in a form reminiscent of the Gell-Mann—
Okubo formula:

(n+2)F7M} — AFg My — (n — 2)F2 M

=A4(r — )m?*{(r — 1)(2nZF + A,)

+ Bg,[(r— 1)L, — L]} + (n+ 2)F) M d,

— 4FZM3dyi — (n —2)F2M2d,, (118)
(n+2)F) —AFf — (n—2)F;

2mBoy, 2r .M2 M3
= 6.2 (1 + ) lo M2 —(2n —1)log —= A2

M3
+ 2(n® —1)log M—;f} + (n+2)F2e, — 4Fgex
K

— (n—2)F?e,. (119)
The 7 mass identity involves the new LEC Z? = 1682, L?.
We have also introduced the NNLO remalnders d, and e,.

The Ward identities are therefore expressions of F
and FAM?% (P = 7, K,n,X) in terms of the fundamen-
tal parameters 7 = m;/m, X(n + 2), F%(n + 2), the LECs
L. g, chiral logarithms of pseudoscalar masses and NNLO
remainders. The pion and kaon identities yield then
L4568 in terms of r, By,,, F2(n—|—2)7 chiral logarithms and
NNLO remainders; see (30), (31), (34) and (35). We can
obtain a similar expression for L7 from the identity for
F?M?. From Sect. 4, pion and kaon Ward identities lead
to the expression of the parameters By, and F?(n + 2)
as functions of the two fluctuations parameters u, v, the
ratio of quark masses r and NNLO remainders [see (54)
and (55)].

We can now exploit all the remaining Ward identities
to write F%, M% and F? as functions of r, u, v, chiral log-
arithms of Mp and NNLO remainders. We need thus to



132

Table 2. Value of Mx/Mk as a function of Y (4) and r for

n=2
Y4) r=20 r=25 r=30
0 1.43 1.37 1.30
0.2 1.44 1.38 1.31
0.5 1.44 1.38 1.31
1 1.46 1.40 1.32
2 1.48 1.42 1.35
4 1.57 1.53 1.46

know the masses M g ., the decay constants Fr x and
the NNLO remainders. As an illustration of the method,
we take the physical values of the masses and decay con-
stants and set the remainders to zero, in order to obtain
M#% through an iterative procedure. We start with the
approximate value

M5
M

rF2 [ 4 F2M? } (120)

start_2Fl2(—F72 r+1 FIZ(MIZ(
and iterate (116) and (117) until they converge to M. For
instance, the values for Mx /M at n = 2 are collected in
Table 2.

B Masses in the SU(2) x SU(2) chiral limit

To know the masses of the Goldstone bosons in the
SU(2) x SU(2) chiral limit, we take the limit m — 0
in all the mass and decay constant identities, and reex-
press each LEC in this limit in terms of the same LEC
with m # 0 and chiral logarithms of M}/M3; see (43)
and (46). Using the previous relations, F3 and M3 are
functions of (r,u,v), pseudoscalar masses M2 and Mé,
and remainders. If we keep on setting Mr i, and Fi; k to
their physical values, and neglecting NNLO remainders,
we can compute all the masses in the SU(2) x SU(2) limit
in terms of the ratio of quark masses r and the fluctuation
parameters u and v.

We need the pseudoscalar masses M3 in particular to
compute the factors f, and g, arising in the expression
of SU(2) x SU(2) order parameters (41) and (44). These
factors can be written as

M2 M2 1 1 M?
by = om T g, = m I 08—
F2r—1 F? r— 13272 M2
MZnr+2 . M2 ¢
bn = 7F77% 9 AZn? Cn = 7?3(7”" + Q)Aén’
fn = hn +bn7 In = hn +.7 + cn. (121)

Table 3 shows an illustration of the physical case n = 1.
The quark mass ratio is set to r = 25. Z(3) and Y (3) were
chosen as parameters, rather than u; and vy [the two sets
are related through (54) and (55)], and we set Z(3) to
1. j is only a function of r. h,, depends on Y (n + 2) only
through L] , which vanishes for n = 1. For r = 25, we have
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Table 3. Mass logarithms defined in (121) and involved in
Z(2) and X(2), forr=25,n=1and Z(3) =1 (j = 0.021 and
h1 =0.059). Mx k,, and Fr ik are set to their physical values,
and all NNLO remainders are neglected

Y b c f g

0 —0.018 —0.021 0.037 0.062
0.5 —0.013 —-0.015 0.043 0.067
1 —0.008 —0.009 0.050 0.072
2 —0.003 —0.002 0.056 0.077
4 —0.009 —0.005 0.053 0.071

Table 4. Combination of chiral logarithms I defined in (127)
and involved in Z(2) and X (2) when n — co. My x and Fr i
are set to their physical values, and all NNLO remainders are
neglected

a r=20 r=25 r=30
0 0.003 0.003 0.002
1 0.003 0.003 0.002
2 0.003 0.003 0.002
4 0.004 0.004 0.003
6 0.004 0.004 0.004
10  0.006 0.007 0.007

7 = 0.021 and h; = 0.059. Further study shows that f;
and g are only weakly dependent on Z and r. If we set the
masses and decay constants to their physical values and
vary n, we observe that f,, and g, are increasing functions
of n.

C Large-n limit

We take now the large-n limit as described in Sect. 8.1.
We stress that this limit is considered only at the level
of the effective theory, with the additional assumption
that the masses and decay constants tend to some par-
ticular asymptotic values. For numerical purposes, we will
furthermore take these asymptotic values as the physical
ones, and set the NNLO remainders to 0. We recall that
we have introduced in this limit two parameters z,, and a
describing the behaviour of SU(n + 2) x SU(n + 2) chiral
order parameters:

Z(n+2) = (1 —=n(r) —en)zoo,
(122)

The chiral logarithms disappear then from the mass iden-
tities (17)—(19). In the decay constant identities (25)—(27),
only the logarithms of M% /M% survive — M,, disappears
from the right hand side of all mass and decay constant
identities. Due to this simplification, (120) becomes an
exact formula for Mx (up to NNLO remainders). For
r = 20,25,30, Mx /M is respectively 1.43, 1.37 and 1.30.
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As far as the n-meson is concerned, the mass identity
(118) and the finiteness of all masses and decay constants
at large n result only in a constraint on the large-n be-
haviour of Z? (i.e. L¥). On the other hand, the (LEC-
free) relation for the decay constants (119) imposes that
F, = F; up to NNLO remainders when n — oo. This
can be related to the structure of the n-meson: A, =
(14 2/n)Y/? . diag[1,1,—2/n... — 2/n], so that a similar
equality may apply to 7 and 7 masses in this limit. Such
an assumption is however not necessary for our purposes:
as we noticed earlier, the large-n behaviour of M, does
not affect the K and X-meson spectrum since log M% dis-
appears from the Ward identities for the unmixed states.

Following the same lines as in the previous section, we
can exploit the Ward identities in the SU(2) x SU(2) chiral
limit to determine the pseudoscalar masses for m — 0. Let
us in particular notice the identities for the kaons:

F2 r r, FZ
F73N1+(§—1)77+*6n—6n+?361<n

ra 1—e(r)—d, M?

— 123
64721 —n(r) —e, F2 (123)
M5 M3 M
X |:210g]\4,)2(— llogM—?{—logM—IQ{ ,

F2M% 7 r r F2M% -
=S (5 1) et S — ] + BT Edicn,

F20M2 2{+2 €3t ez 0K
(124)

and the extra-X states:

F)%NFI%P FE] ra l—e(r)—dn%g M%

Fz " F2 |7 FE| 16n’1—n(r)—e, F2 ° M3
FQ
+ Te’ll’b —én+ %éXnv (125)
FZM2 F2M2 [ 4 F2 M2
XX DKDK | x| (rd), — dy)
F2M2 ~ F2M2 |r+1  FLMZ
FYME -
 Feag Lo (126)

Comparing (125) and (126) with (116) and (117) shows
that F2 = F2 and M% = M% in the large-n limit (up to
NNLO remainders).

The chiral logarithms involved in the discussion of X (2)
and Z(2) reduce now to a single combination of loga-
rithms, independent of the 7 observables:

In gn

loo = lim — = lim = (127)
n—oo N n—oo N
. M2 oy 2 2 V2
= T o o oe g Tleege | (129)

If we neglect (as a first approximation) the chiral log-
arithms in (123) — setting a = 0 — we obtain
; M2
la=o = F2? 3272

133
r F2M? 14 (r/2 —1)e(r)
x < log = ——=2- + log
{ 2 FZ M2 1+ (r/2=1)n(r)
+ log (4 — 1 —TFEME
e A G R -5 V2
F2
— log (2“— ﬂ} (129)
Fig

In (129), we would naively expect the first line to be
dominant at large r. This is not actually the case. We have

r F2M2 r M?2
log ——2"T —log —— F=92K _1=94 (130
Og 2F}2(MIQ{ Og T; ¥ 1a T2 Mg ) ( )

and (e —n)(r) is precisely changing sign at r3, being posi-
tive for r < 75 and negative r > r3. We see therefore that
the two logarithms in the first line of (129) are of opposite
signs, exchanging them for r ~ 24.

The actual sign of [, is therefore a question of subtle
compensation between all the logarithms involved in its
expression. Following the procedure outlined above, we
have computed the values of [, for various values of r and
a, collected in Table4, with M, x and Fi i set to their
physical values, and all NNLO remainders neglected. We
see that [, remains small and positive in any case.
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